The second law of thermodynamics works because of the statistics of very large numbers. Consider a bouncing ball: as it bounces, it dissipates heat and eventually does not bounce as high.
Topics
9/11
Acquisition Reform
Advertising
Alaway
Alcohol
Ale
Allergies
Antisemitism
Barack H. Obama
Beer
Billiards
Biology
Books
Budget
Bureaucracy
California
Capitalism
Carbohydrates
Carcinogen
CDC
Chemical Warfare
Chemistry
Chemophobia
Chirality
Climate Science
Colonial Pines
Computers
Conservation Laws
Constitution
Consumerism
Cosmology
CPT Invariance
Creationism
Customer Service
Daesh
David Irving
Dead End
Defense
Dinosaurs
Disasters
Economic
Energy
English
Ethics
Evolution
Fluoride
Food
FTL
Garden Care
George W. Bush
Gerlich and Tscheuschner
GISS
Glaciers
GMOs
HadCRU
Haiti
Health
Himalayan Rock Salt
HITRAN
Holocaust Denial
Home Brewing
How It Looks From Here
html
Humor
Information
Infrared Spectroscopy
IPCC
Iran
ISIS
Islam
Islamophobia
Israel
Ketotifen Fumarate
Law
Lawn Care
Leibniz
Lisbon
Magnetism
Math
Medco
Medicine
Modeling
Molecules
Monopoly
Monsanto
Naphazoline hydrochloride
Neutrinos
Nietzsche
NIH
NIST
Noether's Theorem
Non-hazardous
Norton Ghost
Nuclear Warfare
Oil
Oil Spill
Olopatadine hydrochloride
Opinion
Orson Scott Card
Parody
Pataday
Patanol
Pesticides
Pheneramine maleate
Physics
Plumbing
Politics
Poll
Pope
POTUS
Prescriptions
Prop 65
Psychology
Quantum Mechanics
Quiz
Racism
Radiative Transfer
Relativity
Religion
Respiration
Senior Housing
Signs
Smoking
Specific Gravity
Statistics
Stock Market
Sugars
Sun Tzu
Surface Temperature
Surgeon General
Symantec
Target
Temperature
Terrorism
The Final Solution
The Holocaust History Project
Thermodynamics
Time
Trains
Units
Voltaire
von Clausewitz
Weather
White House
Wine
Yeast
Friday, November 12, 2010
Fluctuations
This post is part of a series,Nonsense and the Second Law of Thermodynamics The previous post is entitled Entropy and Statistical Dynamics.
The second law of thermodynamics works because of the statistics of very large numbers. Consider a bouncing ball: as it bounces, it dissipates heat and eventually does not bounce as high.
The second law of thermodynamics works because of the statistics of very large numbers. Consider a bouncing ball: as it bounces, it dissipates heat and eventually does not bounce as high.
Saturday, November 6, 2010
Entropy and Statistical Thermodynamics
This post is part of a series, Nonsense and the Second Law of Thermodynamics. The previous post is entitled The Second Law and Swamp Coolers.
A previous post discusses the macroscopic thermodynamic definition of entropy, but there is another, statistical way of describing entropy. Consider an isolated macroscopic system of interacting molecules. Without knowing much about what is going on with the individual molecules, it is possible to measure macroscopic thermodynamic properties such as the pressure, the temperature etc.
(Figure Source)
Consider that the system is isolated; so that the total energy of the entire system of molecules is a constant. Energy is free to move from one molecule to another, and each molecule has multiple electronic, vibrational, rotational, and translational energy states that it could be in. There are many distinguishable ways that the system could be arranged to achieve the this energy.
A previous post discusses the macroscopic thermodynamic definition of entropy, but there is another, statistical way of describing entropy. Consider an isolated macroscopic system of interacting molecules. Without knowing much about what is going on with the individual molecules, it is possible to measure macroscopic thermodynamic properties such as the pressure, the temperature etc.
Consider that the system is isolated; so that the total energy of the entire system of molecules is a constant. Energy is free to move from one molecule to another, and each molecule has multiple electronic, vibrational, rotational, and translational energy states that it could be in. There are many distinguishable ways that the system could be arranged to achieve the this energy.
Subscribe to:
Posts (Atom)